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Abstract 14 

Current real-time PCR data analysis methods implement linear least squares regression methods for 15 

primer efficiency estimation based on standard curve dilution series. This method is sensitive to 16 

outliers that distort the outcome and are often ignored or removed by the end-user. Here, robust 17 

regression methods are shown to provide a reliable alternative, since they are less affected by 18 

outliers and often result in more precise primer efficiency estimators than the linear least squares 19 

method.  20 

Keywords: Robust regression, real-time PCR, outliers, qPCR, standard curve, PCR efficiency 21 
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Manuscript 24 

The real-time quantitative polymerase chain reaction (qPCR) is a well-established technique for 25 

quantification of nucleic acids [1, 2]. Quantification of relative and/or absolute quantities is generally 26 

conducted by comparing the quantitative outcome to a calibration curve made by a standard dilution 27 

series. In this setup, it is essential to construct a calibration curve that accurately reflects the reaction 28 

efficiency of the qPCR to estimate the concentration of the unknown samples [2]. 29 

In current qPCR practice, the linear least squares regression is implemented to deduce the PCR 30 

reaction efficiency from the calibration curve (for details see Supplementary Material 1) [3]. This 31 

method works well with an optimal standard curve preparation and minimal variation between 32 

technical replicates. However, in practice, minor variations are regularly observed and these tend to 33 

increase in dilutions at the lower end of detection. In addition, the least squares method is sensitive 34 

to outliers, especially when these are present at the extremes of the dilution series. In general, 35 

variation in standard dilution series is more frequently observed in the lower extreme, when the 36 

effect of the random sampling error increases. This issue often results in the manual removal of 37 

some replicates by the end-user to intuitively fit a better standard curve, making data analysis 38 

subjective to the interpretation of the end-user. In this light, robust regression methods for 39 

estimating the slope may be preferred as they are less susceptible to outliers and provide more 40 

precise estimators for a variety of error distributions [4]. This concept was recently introduced and 41 

explored in the context of real-time PCR by Orenti & Marubini, showing that a robust regression 42 

method, the biweight MM estimator, could offer an alternative to the linear least squares method in 43 

calibration curve calculations, especially when outliers are present [5].  44 

Here, we extend this concept by comparing the least squares method with three robust regression 45 

procedures (the MM estimator [5,6], the robust estimator of Theil and Sen [7,8] and the robust 46 

estimator of Siegel [9]), by examining the effect of the error distribution on precision in the absence 47 

of outliers and by including the least-squares method after outlier removal according to the Grubbs’ 48 
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outlier test [10]. The Grubbs test is a standardized test for detecting and removing outliers from 49 

qPCR standard curves. It tests the null-hypothesis that there are no outliers in the data versus the 50 

alternative that there is at least one outlier. The largest Cq value is removed when the p-value of this 51 

test is less than 0.05. This process is repeated on the reduced dataset until the p-value exceeds 0.05.  52 

We consider bias caused by outliers and precision as criteria to evaluate and compare the different 53 

estimators. More specifically, we examine the bias of the primer efficiency estimator when there is 54 

an outlier at the extreme of the dilution series. It is desirable to have a method that is not affected by 55 

a single outlier when the other dilution points indicate good primer efficiency.  56 

The precision is inversely proportional to the variance of the estimator. When multiple standard 57 

curve dilution series of comparable quality are available for estimating the primer efficiency, then it 58 

is desirable to have similar efficiency estimates across all series. This corresponds to an estimator 59 

with a small standard error or, equivalently, a high precision.  60 

To illustrate the performance of the different methods for standard curve calculations, a qPCR assay 61 

for the quantification of HIV DNA was performed in 8 dilution series. This nested qPCR assay uses two 62 

rounds of PCR amplification of the HIV gag-region. DNA from U1 cells, which contain two HIV provirus 63 

integrations per cell, were used for the 8 dilution series; for details, see Supplementary Material 2 64 

[11,12]. The regression lines and corresponding efficiencies for each replicate are estimated 65 

according to the different regression methods (Supplementary Material 3 & 4). All calculations were 66 

performed  using the statistical software environment R [13].  67 

A first distinction between linear and robust regression methods can be made by examining a 68 

dilution series with and without an outlier (Figure 1). In case no outliers are present (Figure 1A), all 69 

four methods provide a comparable and accurate estimate of the efficiency. However, when an 70 

outlier is present (Figure 1B), the least squares method results in a decreased primer efficiency 71 

estimate, while the estimated efficiencies of the robust methods remain largely unaffected by the 72 

outlier.  73 
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To examine this in more detail, data simulations were performed to mimic the experimental setups 74 

with and without outliers. Seven distinct calibration curves are considered and replicated twice. 75 

Quantification cycles are simulated according to a linear model with intercept 26.5 and slope -3.553 76 

corresponding to a primer efficiency of 91.2% (see the Supplementary Material 1 for more details on 77 

the linear model and the primer efficiency). To simulate the errors, we consider the normal 78 

distribution with mean zero and standard deviation 0.19 which corresponds to the estimated 79 

standard deviation of the error distribution of the data in Figure 1A.  80 

 Table 1A shows the average estimated efficiency based on 10000 Monte-Carlo simulations. Without 81 

the outlier, all estimators are unbiased. However, when a single outlier is present, the least squares 82 

estimator is biased and, on average, underestimates the efficiency by 21%. On the other hand, the 83 

MM estimator remains unbiased while the Theil-Sen and Siegel estimators underestimate the 84 

efficiency by approximately 1%.   85 

A second distinction can be made by examining the variance of the efficiency estimators. For the real 86 

data, the robust regressions have lower standard deviations for the estimated efficiency compared to 87 

the linear least squares regressions (Supplementary Material 4). These standard deviations may 88 

suggest that the least squares estimators are less precise as compared to the robust estimators so 89 

that robust regression will likely estimate the true efficiency more accurately. This is of great 90 

importance while newly designed qPCR primer pairs are often only tested once or twice on a 91 

standard dilution series of reference material. 92 

To examine whether the presence of outliers are solely responsible for this observation, data 93 

simulations were performed as described above, but only to mimic the experimental setup without 94 

outliers so that all four estimators are unbiased. In addition, the performances of the estimators are 95 

tested over different error distributions, as the underlying distribution of the error is unknown. The 96 

following error distributions were included: normal, student t with 3 degrees of freedom, lognormal, 97 

Gumbel and Laplace. They were all standardized to mean zero and standard deviation 0.19 to make 98 
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the results comparable (Table 1B). These choices include symmetric, heavy tailed, and skewed 99 

distributions. 100 

For the five error distributions considered, the MM and Theil-Sen estimator outperform the least 101 

squares estimators except for the normal distribution for which the least squares estimator has a 102 

slightly better performance. Hence, even without outliers, robust regression methods can produce 103 

more precise estimates.  104 

For the normal distribution, the least squares estimator is most precise. This can be expected since 105 

the least squares estimator corresponds to the maximum likelihood estimator for normal distributed 106 

errors. In comparison with the least squares estimator, the MM, Theil-Sen and Siegel estimators 107 

result in an increased standard error of 5%, 5% and 17% respectively. For the other error 108 

distributions, however, the MM and Theil-Sen estimators have an increased precision over the least 109 

squares estimator. For the lognormal distribution, for example, the standard error of the least 110 

squares estimator is more than twice the standard error of the MM and Theil-Sen estimators. The 111 

Siegel estimator has a superior precision over the least squares for the t-distribution, lognormal and 112 

Laplace distribution, but underperforms as compared to the MM and the Theil-Sen estimators.  113 

In summary, we have demonstrated that robust regression estimators are less affected by outliers 114 

and often prove to be more precise for estimating PCR efficiency compared to standard linear 115 

regression with least squares estimation. Especially the MM and Theil-Sen estimators seem to be 116 

appropriate for primer efficiency estimation. Therefore, the implementation of robust regression 117 

methods in qPCR analysis would provide a reliable alternative. Single outlying dilutions can 118 

effectively introduce bias to efficiency estimates, particularly when these occur in the extremes of 119 

the dilution series where stochastic sampling effects at the lower levels of detection may increase 120 

the variation. However, we do want to stress that outlying data points can be an important indication 121 

of poor pipetting and low quality data of the entire PCR run. Therefore, robust regression methods 122 

should not be used to falsely expand the dynamic range of the linear interval of the PCR assay. The 123 
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Cq values at which outlying data points are observed, should still be considered outside the dynamic 124 

range of the assay in the given PCR run.  125 
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Figure 1: Estimated regression lines and estimated efficiencies for two of the eight replicates. 171 

Comparison of the five regression estimates without an outlying dilution (A) and in case of an 172 

outlying dilution at the lower extreme of the standard curve (B). The least squares (black line, --), the 173 

least squares after removal of outliers with the Grubbs test (red line, ···), robust MM (green line, · - ·), 174 

the robust Theil-Sen (blue line, —-) and the robust Siegel (turquoise line, — - —) methods show 175 

equal efficiency in the upper panel (A). The least squares estimate is heavily affected by the outlier in 176 

the lower panel (B), while the estimated efficiencies of the robust methods and the least squares 177 

after performing Grubbs’ test for removing the outlier remain comparable across the replicated 178 

experiments. 179 

  180 
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Table 1: Results of the simulation study in which the true efficiency equals 91.2%. A: averages of 181 

the estimated efficiencies (in %) for the five estimators in the presence and absence of an outlier. B: 182 

standard deviations of the estimated efficiencies for the five estimators applied to the simulated data 183 

without outlier (for which all estimators are unbiased). Smaller values indicate more precise 184 

estimators. All results are obtained based on 10000 Monte-Carlo simulations. 185 

 186 

A LS LS + Grubbs MM Theil-Sen Siegel 

Without outlier 91.2 91.2 91.2 91.2 91.2 

With outlier 70.0 91.2 91.2 90.1 90.5 

 187 

B LS LS + Grubbs MM Theil-Sen Siegel 

Normal 1.27 1.27 1.33 1.34 1.48 

Student t 1.26 1.28 0.99 1.00 1.05 

Lognormal 1.27 1.27 0.64 0.62 0.68 

Gumbel 1.27 1.27 1.22 1.21 1.34 

Laplace 1.27 1.27 1.17 1.16 1.20 

 188 
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